首页 经验文章正文

使用纠缠粒子创建牢不可破的加密

经验 2024年08月08日 08:54 709 admin

埃克特教授解释了随机性和量子密码学的基本概念。图片来源:TomomiOkubo/OIST

量子力学的发现为通信、处理和保护数据的全新方式打开了大门。随着一场量子革命的顺利进行,我们触手可及的、难以想象的长而年的机会正在触手可及。

从宇宙如何运作的基本问题到安全通信——量子力学掌握着我们未来的解决方案。ArturEkert教授是该领域的先驱和量子密码学之父,自2021年4月以来一直担任OIST量子信息安全部门的教授(兼职)和负责人。埃克特教授在大流行后现在能够更频繁地留在OIST接受采访。

埃克特教授说,他有应用数学背景,直到在图书馆偶然发现了《费曼物理学讲座》后,他才打算从事物理学工作——“我读了它,完全被迷住了!带着这种新发现的热情,他开始在牛津大学攻读博士学位,在那里他还遇到了他的导师大卫·多伊奇,量子计算的先驱。与此同时,他偶然发现了另一篇关于量子纠缠的有影响力的论文,由著名物理学家AlainAspect撰写。

“我印象深刻——这篇论文表明量子力学本质上是不可预测的。这是我的起点,当时我明白这可以用于安全通信,“Ekert教授说。但在Aspect及其同事进行这些开创性实验之前,关于量子力学实验是否本质上是不可预测的,存在着激烈的争论。

虽然可以对这些实验的结果进行统计预测,但确定性陈述始终遥不可及。“现在的问题是,我们是处理量子力学中真正的随机性,还是只是我们无法很好地预测结果?”埃克特教授解释道。事实证明,这个问题的答案也是量子密码学发展的关键。

宇宙中真的有随机性吗?宇宙中真的有随机性吗?随机事件可以分为两种不同的类型,科学家称之为客观随机性和主观随机性。“例如,有些事情对你来说可能是随机的,但对我来说不是,因为我有更多的信息可以让我理解和预测事件。如果你无法获得这些额外的信息,那么这个事件对你来说将是随机的——这就是我们所说的主观随机性,“埃克特教授解释道。

令人惊讶的是,抛硬币的经典例子属于主观随机性范畴。只要对初始条件、硬币的运动和结构、房间内的空气流通等有足够的了解,任何抛硬币的结果都将变得完全可预测。“另一方面,客观随机性是一个事件,即使你对它了如指掌,你也无法预测结果,”埃克特教授说。令人惊讶的是,抛硬币的经典例子属于主观随机性范畴。只要对初始条件、硬币的运动和结构、房间内的空气流通等有足够的了解,任何抛硬币的结果都将变得完全可预测。“另一方面,客观随机性是一个事件,即使你对它了如指掌,你也无法预测结果,”埃克特教授说。

量子物理学是否具有这种客观随机性的元素在20世纪的科学家中引起了争论,并遭到了阿尔伯特·爱因斯坦(AlbertEinstein)的强烈反对。

“他认为我们无法预测量子力学实验的结果,因为我们缺乏信息,而不是因为它们本质上是不可预测的,”埃克特教授说。如果这是正确的,并且可以识别出那些缺失的信息,那么量子力学实验的结果应该已经变得可预测了。“他把这种缺失的信息称为隐藏变量,”埃克特教授解释道。

这场理论争论持续了大约30年,直到科学家约翰·贝尔(JohnBell)提出了一个可检验的假设,现在也被称为贝尔不等式。除其他用途外,该测试还可以回答量子事件是否真的是随机的。

简而言之,这就是它的工作原理;在使用纠缠光子的合适实验中,测量特定参数。如果这个参数超出了预期范围,它支持量子水平上的事件具有客观随机分量,但如果它落在预期范围内,那么爱因斯坦的反对意见是正确的,并且存在隐藏变量。

“问题在于,当贝尔发表他的工作时,还不可能进行这些高度复杂的实验,”埃克特教授说。由于数学而不是技术手段来执行测试,这场辩论在接下来的十年里一直没有得到解答。直到1970年代,当这些实验最终成为可能时,约翰·克劳泽(JohnClauser)是最早进行这些实验的人之一。

“当他做这些第一个实验时,他观察到贝尔不等式的违反,这支持了自然界的基础是随机的这一事实,”埃克特教授说。

机密信息被转换为二进制,然后通过执行二进制添加叠加到秘密随机加密密钥上。结果是另一个1和0的随机序列。因为这个序列也是随机的,所以即使在分析序列时,也没有人能找到隐藏在其中的机密信息。在此阶段,消息(也称为密码)只能使用匹配的密钥进行解码。这样,即使使用非加密或公共方法,也可以安全地发送消息。一旦接收者获得密码,他们就可以通过减去加密密钥的随机序列来恢复隐藏的机密信息。图片来源:KaoriSerakaki/OIST

但是,由于当时的技术仍然有限,这一令人兴奋的发现起初仍然是初步的。事实上,直到90年代后期才确定此事。其中,AlainAspect、NicolasGisin、RonaldHanson、JianweiPan和AntonZeilinger关于量子纠缠本质和贝尔不等式的开创性工作证实了量子力学的基本工作原理,表明量子事件中存在真正的随机性。

在2022年的Aspect中,Clauser和Zeilinger因其开创性的实验努力而分享了诺贝尔奖。

从量子力学到量子密码学在攻读博士学位期间了解了这一切后,埃克特教授意识到随机性可以用来创造一种开发牢不可破的加密的方法。在安全通信成为量子之前,密码学已经使安全传输信息成为可能,除了一个关键的陷阱。在攻读博士学位期间了解了这一切后,埃克特教授意识到随机性可以用来创造一种开发牢不可破的加密的方法。在安全通信成为量子之前,密码学已经使安全传输信息成为可能,除了一个关键的陷阱。

“让我们想象一下,你想安全地将信息传输给另一个人。在这种情况下,你们俩都需要一种叫做加密密钥的东西,这是一个完全随机的1和0序列。这把钥匙需要严格保密!“埃克特教授说。虽然密钥是随机的,因此毫无意义,但它稍后将允许其持有者解码发送的消息。

但这种传统的加密方法有一个主要的安全障碍:对密钥保密。如果未经授权获得访问,发送的任何消息都可能被解码,并且如何完全确定没有人获得过密钥的访问权限?

传统上,通过使用受保护的线路进行通信以及网络安全专家实施各种安全功能来保护加密密钥,可以解决这个问题。

“但你看,即使有最好的安全措施,你也永远无法100%确定没有人获得访问权限,”埃克特教授指出。

当贝尔不等式的实验表明量子力学具有固有的随机成分时,这一切都发生了变化。“解决方案是使用量子密钥。这些都是使用纠缠光子产生的,“埃克特教授解释道。

这种生成加密密钥的方法使得使用贝尔定理测试是否有人进行过未经授权的访问成为可能。“如果你的钥匙违反了贝尔不等式,你可以确定没有人可以访问你的钥匙,”埃克特教授说。有了这个,他发现了一种全新的通信保护方式:量子密码学。

这种加密方法现在比以往任何时候都更加重要,因为量子计算机发展的进步将使经典加密变得不那么安全——这对于敏感数据来说是一个问题,例如在医疗或金融领域。在这里,量子密码学提供了一种确保保护的方法,但它不太可能成为所有通信的标准。

“量子密码学不会完全取代经典方法,因为并不总是需要完美的安全性。并非每辆车都需要达到一级方程式标准,使用纠缠粒子创建牢不可破的加密加密也是如此,“埃克特教授说。“量子密码学不会完全取代经典方法,因为并不总是需要完美的安全性。并非每辆车都需要达到一级方程式标准,加密也是如此,“埃克特教授说。

然而,制定与当今复杂的技术世界保持同步的现代网络安全战略是科学和社会面临的一项关键挑战,也是埃克特教授加入OIST的原因之一。

埃克特教授说:“我来这里是为了帮助在冲绳建立一个充满活力的量子和网络安全社区,我也想帮助人们了解网络安全并改善数据保护。

第二个重点是他对随机性概念的研究,OIST为此提供了理想的条件。“我很欣赏冲绳美好而安静的环境,”埃克特教授指出。虽然客观随机性在量子力学中起着重要作用,但埃克特教授在OIST的研究解决了一个关于我们宇宙本质的相对基本的问题:“我对为什么事物是随机的感兴趣,”他说。

来自:量子梦

标签: 使用纠缠粒子创建牢不可破的加密

卓越科技网 网站地图 免责声明:本网站部分内容由用户自行上传,若侵犯了您的权益,请联系我们处理,谢谢!联系QQ:2760375052 版权所有:卓越科技网 沪ICP备2023023636号-5